Location and Electronic Nature of Phosphorus in the Si Nanocrystal − SiO2 System

نویسندگان

  • Dirk König
  • Sebastian Gutsch
  • Hubert Gnaser
  • Michael Wahl
  • Michael Kopnarski
  • Jörg Göttlicher
  • Ralph Steininger
  • Margit Zacharias
  • Daniel Hiller
چکیده

Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exciton–erbium interactions in Si nanocrystal-doped SiO2

The presence of silicon nanocrystals in Er doped SiO2 can enhance the effective Er optical absorption cross section by several orders of magnitude due to a strong coupling between quantum confined excitons and Er. This article studies the fundamental processes that determine the potential of Si nanocrystals as sensitizers for use in Er doped waveguide amplifiers or lasers. Silicon nanocrystals ...

متن کامل

Quenching of Si nanocrystal photoluminescence by doping with gold or phosphorous

Si nanocrystals embedded in SiO2 doped with P and Au at concentrations in the range of 1 10–3 10 cm 3 exhibit photoluminescence quenching. Upon increasing the Au concentration, a gradual decrease in nanocrystal photoluminescence intensity is observed. Using a statistical model for luminescence quenching, we derive a typical radius of 3 nm for nanocrystals luminescing around 800 nm. Au doping al...

متن کامل

EFFECT OF COMPOSITION ON PHASE EVOLUTION AND MICROSTRUCTURE OF REACTION BONDED MULLITE (RBM)

Compositions of Al2O3+Si, SiO2+Al and Al+Si systems were prepared to study the effect of reaction bonding process on the mullite formation. The composition of each system was adopted according to mullite stoichiometery and sintered in 700-1600°C range. Results showed that the formation of reaction bonded mullite starting from Al2O3+Si mixtures, proceeded in two partially overlapping steps, the ...

متن کامل

Strong exciton-erbium coupling in Si nanocrystal-doped SiO2

Silicon nanocrystals were formed in SiO2 using Si ion implantation followed by thermal annealing. The nanocrystal-doped SiO2 layer was implanted with Er to a peak concentration of 1.8 at. %. Upon 458 nm excitation the sample shows a broad nanocrystal-related luminescence spectrum centered around 750 nm and two sharp Er luminescence lines at 982 and 1536 nm. By measuring the excitation spectra o...

متن کامل

Probing the size and density of silicon nanocrystals in nanocrystal memory device applications

Structural characterization via transmission electron microscopy and atomic force microscopy of arrays of small Si nanocrystals embedded in SiO2, important to many device applications, is usually difficult and fails to correctly resolve nanocrystal size and density. We demonstrate that scanning tunneling microscopy sSTMd imaging enables a much more accurate measurement of the ensemble size dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015